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Diffusion of a Test Chain in a Quenched Background
of Semidilute Polymers
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Based on a recently established formalism [U. Ebert, J. Stat. Phys. 82:183
(1996)], we analyze the diffusive motion of a long polymer in a quenched ran-
dom medium. The medium is modeled by a frozen semidilute polymer system.
In the framework of standard renormalization group (RG) theory we present a
systematic perturbative approach to handle such a many-chain system. In con-
trast to the work cited above, here we deal with long-range correlated disorder
and find an attractive RG fixed point. Unlike in polymer statics, the semidilute
limit here yields new nontrivial power laws for dynamic quantities. The
exponents are intermediate between the Rouse and reptation results. An explicit
one-loop calculation for the center-of-mass motion is given.

KEY WORDS: Polymer dynamics; quenched random media; renormalization
group.

1. INTRODUCTION

The diffusion of a polymer chain in a quenched environment of obstacles
still poses many open questions. It is of direct relevance for the motion of
a chain through a gel. Theoretically two opposit approaches have been
pursued: The reptation picture in its original form treats the environment
as an ordered lattice of impenetrable obstacles.(2, 3) It neglects all interac-
tion effects except for the impenetrability and it ignores the disordered
character of the environment, which may lead to entropic trapping.(4)

In the asymptotic limit of long chains it predicts simple power laws. The
opposite approach models the environment as a Gaussian distributed
random potential with correlations of microscopic range.(1, 5�7) It thus
concentrates on energetic effects, and, in a coarse grained sense, also on

169

0022-4715�99�0700-0169�16.00�0 � 1999 Plenum Publishing Corporation

1 Fachbereich Physik der Universita� t Essen, D-45117 Essen, Germany; e-mail: smull�
next17.theo-phys.uni-essen.de.



entropic traps. It however completely neglects the impenetrability of the
obstacles and it ignores all correlations in the quenched environment. This
approach results in slowing down of the chain motion which is much
stronger than predicted by reptation theory. In particular it has been
argued that the diffusion coefficient of the chain decreases exponentially
with increasing chain length.(1, 6)

The present work builds upon the random potential model, but
includes realistic correlations of the obstacles. The environment is modeled
as a quenched equilibrium configuration of a polymer solution, where the
chains forming the environment may chemically differ from the mobile
chain. In the semidilute limit of strongly overlapping background chains
this can be considered as a good model for a gel, except that we ignore the
dynamics of short strands of the gel. More serious is the fact that we treat
all chains as phantom chains. They interact by excluded volume interac-
tion, but of course the mobile chain can penetrate the strands of the gel.

Our model introduces the macroscopic correlation length !(B) of the
density correlations of the environment, which can be identified with the
blob size !c (concentration blobs) of the quenched semidilute solution of
the background chains.(8) Two other important length scales are the radius
of gyration Rg of the mobile chain and the average radius of gyration R (B)

g

of the background chains. This is in contrast to Gaussian disorder models,
where the correlation length of the disorder is of the order of the segment
size of the mobile chain, and where no scale corresponding to R (B)

g shows up.
Our model turns out to be renormalizable, most similar to standard

ternary polymer solutions. Renormalization drives the system into fixed
points, and in limiting situations power law scaling results. The exponents
are intermediate between Rouse type behaviour and reptation results.

We performed an explicit one loop calculation of the center-of-mass
motion,

R2(t) :=( (Rcm(t)&Rcm(0))2) (1.1)

where the angular brackets denote the average over the stochastic process
of the test chain motion and the bar stands for averaging over the
quenched semidilute background. Switching off the interaction with the
random background we simply deal with the free draining limit, which for
the center-of-mass motion yields a diffusive behaviour identical to that of
a pure Rouse chain: R2(t)tt�n for all times. Here n denotes the segment
number of the moving chain. With excluded volume interaction between
the moving chain and the background polymers we find three time regimes:

(i) As long as the polymer has moved much less than the blob size
of the background, it does not notice the hindering due to the frozen
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chains. We obtain approximately free diffusion: R2(t)=6D0 t, where D0t

1�n, and call this regime the ultra-short time regime.

(ii) What follows is a short time regime, where the moving polymer
interacts with the background chains. This leads to a slowing down. We
find that in the case of strongly overlapping chains there is a universal time
regime where pure subdiffusive power law behaviour emerges: R2(t)tt0.78.

(iii) For very long times one always finds diffusive behaviour,
R2(t)=6Dt, but the diffusion coefficient is reduced as compared to Rouse
behaviour. In the semidilute limit the diffusion constant decreases with
chain length resp. monomer concentration as Dtc&0.45n&1.45.

Since these exponents are obtained from a first order =-expansion
setting ==4&d=1 in three dimensions, their quantitative precision is
limited. Due to the technical complexity of the calculations a higher loop
evaluation however seems out of reach.

This paper is organized as follows: In Section II we formulate the
model and set up the dynamic generating functional which in principle
allows for a perturbative calculation of any correlation function concerning
the mobile chain. In Section 3 we perform a bare one loop calculation of
the center-of-mass motion. Section 4 is devoted to the renormalization of
the model. To renormalize the static parameters of the model we establish
a connection to ternary polymer solutions. The dynamic renormalization is
examined by means of the one loop result for the center-of-mass motion.
The final scaling results for the center of mass motion are presented in Sec-
tion 5, followed by a concluding discussion in Section 6. Two appendices
are devoted to the relation between quenched and annealed averages in
polymer statics and discuss the case of Gaussian polymers, respectively.

2. FORMALISM

2.1. The Model

We employ the standard Langevin-dynamics of a discrete chain con-
sisting of n segments:

�
�t

ri (t)=# \&
�

�ri (t)
HM+fi (t)+ (2.1)

where ri (t) # Rd (i=1,..., n) fixes the position of the i th segment of the
moving chain in a d-dimensional space and ���r stands for the gradient.
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The thermal random forces fi+(t) (+=1,..., d ) are modeled by Gaussian
white noise. Their second moment is connected to the microscopic mobility
# of a segment:

( fi+(t) fj&(t$))=
2
#

$ij $+&$(t&t$) (2.2)

This guarantees the correct equilibrium distribution Peq.te&HM for the
chain (we set kBT=1). The Hamiltonian HM consists of three parts:

HM[r1(t),..., rn(t); [r(B)]]

=
1

4l 2 :
n

i=2

(ri (t)&ri&1(t))2+u0 l d :
1�i< j�n

$d (ri (t)&rj (t))

+v0 l d :
n

i=1

\(B)(ri (t)) (2.3)

The first two parts describe chain connectivity resp. excluded volume inter-
action in a discrete spring and bead model, where the effective segment size
is determined by the microscopic length l. The last term describes the inter-
action with the background.

The quenched random background consists of M spring and bead
chains with lengths n1 ,..., nM . A configuration of the background is given
by all segment positions of all chains:

[r(B)]=r(B)
1, 1 ,..., r(B)

1, n1

chain 1

; r(B)
2, 1 ,..., r(B)

2, n2

chain 2

;...; r(B)
M, 1 ,..., r(B)

M, nM

chain M

. (2.4)

The segment density of the background at point r then reads

\(B)(r)= :
M

m=1

:
nm

j=1

$d (r&r (B)
m, j) (2.5)

i.e. the interaction between the moving chain and the background chains in
Eq. (2.3) is nothing else than the excluded volume interaction among
segments of the moving chain and segments of the background chains. The
corresponding interaction constant is v0 , while u0 in Eq. (2.3) governs the
intrachain-interaction among segments of the moving chain. Note that the
r(B)

m, j are independent of t.
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Finally we have to specify the distribution function P (B)
M of the back-

ground polymers. We here use a canonical ensemble of chains, just as if the
background would be a polymer solution in equilibrium:

P (B)
M [[r(B)]]=

1
Z (B)

M

e&HM
(B)

(2.6)

where

H(B)
M [[r(B)]]=

1
4l 2 :

M

m=1

:
nm

j=2

(r (B)
m, j&r (B)

m, j&1)2

+u (B)
0 l d :

all pairs
(m1 , j1); (m2 , j2)

$d(r (B)
m1 , j1

&r (B)
m2 , j2

) (2.7)

is the spring and bead Hamiltonian of M chains with an excluded volume
interaction constant u (B)

0 among all segments of the background and

Z (B)
M =| D[r(B)] e&HM

(B)
(2.8)

denotes the partition function. The integration � D[r(B)] means summation
over all configurations of the background polymers in a d-dimensional
volume 0 � �, i.e.

D[r(B)]= `
M

m=1

`
nm

j=1

d dr (B)
m, j

(4?l 2)d�2 (2.9)

The factor (4?l 2)d�2 is introduced for convenience. While angular brackets
denote the average over thermal forces, a bar stands in the following for
averaging any observable O over the frozen background distribution:

O� =| D[r(B)] P (B)
M [[r(B)]] O[[r(B)]] (2.10)

For explicit calculations it is more convenient to switch to the equivalent
grand canonical ensemble. Thus all final results are understood to hold in
the thermodynamic limit of infinitely many background chains in an
infinite volume 0 � �, where the segment concentration

c=
�M

m=1 nm

0
(2.11)
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is kept finite. A general polydisperse grand canonical polymer ensemble is
characterized by the function cp(n(B)), giving the concentration of chains of
length n(B) # [1, 2,..., �]. The total chain concentration

cp= :
�

n(B)=1

cp(n (B)) (2.12)

is connected to the segment concentration c via

c=Ncp (2.13)

where N denotes the average chain length of the background chains

N= :
�

n(B)=1

n(B) cp(n(B))
cp

(2.14)

In conclusion we should point out that the model presented here is known
to include all relevant terms in the RG sense, i.e. contributions from any
short-ranged modification of the model like three-body interactions vanish
in the limit of long chains. As stressed before our model however does not
fall into the universality class of short range Gaussian correlated disorder
since the quenched background has a macroscopic correlation length. This
modifies of the model pursued in ref. 1 on a long range scale.

2.2. The Dynamic Generating Functional

A convenient mathematical tool to calculate dynamic correlation func-
tions is the path integral formalism.(1, 9) We introduce the dynamic func-
tional in Ito-discretization:

ZM[[h], [h� ]] :=�exp \i | dt :
n

i=1

(hi (t) ri (t)+h� i (t) r~ i (t))+� (2.15)

=| d[r, r~ ] exp \&| dt :
n

i=1
_#r~ 2i &ir~ i \r* i+#

�
�ri

HM+
&i(hiri+h� i r~ i)&+ (2.16)

The time discretized meaning of the functional integral is � d[r, r~ ]=
� >k >j [d drj ({k) d dr~ j ({k)�(2?)d]. All time integrals without limits are
understood to run from &� to +�. Differentiation with respect to the
external fields [hi (t), h� j (t~ )] yields correlation functions of [ri (t), r~ j (t~ )].
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As in ref. 1 we formally have to regularize the theory by adding to the
Hamiltonian Eq. (2.3) a term

H0=
R2

cm(t)
2L2 (2.17)

where

Rcm(t)=
1
n

:
n

i=1

ri (t) (2.18)

is the center-of-mass of the moving polymer. This term serves to locate the
mobile chain in a finite volume of order 0=Ld. It is needed for purely
technical reasons in intermediate steps of the calculation. We will let
L � � as soon as possible. By means of the identity

�
�rl

$d (rl)=|
d dp

(2?)d ip eiprl (2.19)

the dynamic functional can be written as

ZM[[h], [h� ]]=| d[r, r~ ] exp \&S0&SI&S (B)
I +i | dt :

n

i=1

(hiri+h� ir~ i)+
(2.20)

where

S0=| dt :
n

i=1
_#r~ 2i &ir~ i \r* i+#

2ri&ri&1&ri+1

2l 2 +#
Rcm

nL2+& (2.21)

is the free action and

SI=u0 l d |
p
| # dt :

n

i, j=1
j{i

(r~ i (t) p) eip(ri (t)&rj (t)) (2.22)

arises from the excluded volume interaction among segments of the moving
chain. The interaction with the background chains is contained in S (B)

I :

S (B)
I =v0 l d |

p
| d dr̂ e&ipr̂\(B)(r̂) | # dt :

n

k=1

(r~ k(t) p) eiprk(t) (2.23)
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We here use the common abbreviation

|
p
#|

d dp
(2?)d (2.24)

We now turn to the disorder average,

ZM[[h], [h� ]]=| D[r(B)] P (B)
M [[r(B)]] ZM (2.25)

Noting that the background coordinates enter ZM only via S (B)
I , we rewrite

this average in terms of a cumulant expansion: Introducing

_(r̂)=&v0 l d |
p
| # dt :

n

k=1

(r~ k(t) p) eip(rk(t)& r̂) (2.26)

we obtain

e&SI
(B)

=e� d dr̂ _(r̂) \(B)(r̂)=e��
j=1 (1�j !) S (B)

I, j (2.27)

where

S (B)
I, j =| d dr̂1 } } } d dr̂j _(r̂1) } } } _(r̂j) \(B)(r̂1) } } } \(B)( r̂j)

C

=(&v0 l d) j | # dt1 } } } # dtj :
n

k1 ,..., kj=1
|

p1 } } } pj

(r~ k1
(t1) p1) } } } (r~ kj

(t j) pj)

_e ip1rk1
(t1)+ } } } +ipjrkj

(tj)(2?)d $d (p1+ } } } +p j) I (B)
j (p1 ,..., p j&1) (2.28)

The static j-point density correlation function I (B)
j of the background

polymers is defined as (note translational invariance):

I (B)
j (p1 ,..., p j&1)

=| d dr̂1 } } } d dr̂j&1 e&ip1 r̂1& } } } &ipj&1 r̂j&1 \(B)(r̂1) } } } \ (B)(r̂j&1) \(B)(0)
C

(2.29)

The superscript C stands for the cumulant. Now

I (B)
1 =\ (B)(0)=c (2.30)

is the segment concentration of the background polymers. A short glance
at Eq. (2.28) reveals that S (B)

I, 1#0. Clearly a constant background potential
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cannot exert any force on the mobile chain. The next term j=2 in the sum
Eq. (2.27) involves a single independent momentum integration, just as SI ,
Eq. (2.22). Writing out these two contributions explicitly, we finally find
the averaged dynamic generating functional as:

ZM[[h] , [h� ]]

=| d[r, r~ ] e&S0+i � dt �n
i=1 (hi (t) ri (t)+h� i (t) r~ i (t))

_exp {&|
p _u0 l d | # dt :

n

i, j=1
j{1

(r~ i (t) p) eip(ri (t)&rj (t))

+
1
2

v2
0 l 2dI (B)

2 ( p) | #2 dt1 dt2 :
n

i, j=1

(r~ i (t1) p)(r~ j (t2) p) eip(ri (t1)&rj (t2))&=
_exp { :

�

j=3

S (B)
I, j

j ! = (2.31)

The terms S (B)
I, j , j�3, contribute only for higher orders (two loop) of per-

turbation theory and will not be explicitly considered here.
Before turning to an explicit calculation of the center-of-mass motion

in the next section we should compare our general result with the one of
ref. 1. Ignoring S (B)

I, j , j�3, we see that our result for the averaged generat-
ing functional resembles that in ref. 1, except for the occurrence of the
momentum-dependent density cumulant I (B)

2 ( p). The form of the latter is
characteristic for the quenched background distribution. If we would have
worked with a Gaussian distribution of unconnected beads, \(B)(r) \(B)(r$)

C

t$d (r&r$), we would have found I (B)
2 ( p)tconst., just as in ref. 1. For-

mally we can map the theory as presented here to a theory with Gaussian
random potentials by taking in the unrenormalized result Eq. (2.31) the
limit of infinite monomer density, c � �. For I (B)

2 ( p) the limiting
behaviour can be deduced from Eq. (3.11), whereas a discussion of j-point
density correlation functions can be found in ref. 10:

I (B)
j (p1 ,..., p j&1) =

c � � {1�u (B)
0 l d

0
for j=2
for j>2

(2.32)

Thus, with v2
0 �u (B)

0 =: v, the generating functional Eq. (2.31) becomes identi-
cal to that of ref. 1. Perturbation theory then proceeds in the two couplings
u0 and v only. This result has an appealing interpretation since the limit
c � � lets one think of a dense polymer background, where the density
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correlation length should be microscopic indeed. However one should keep
in mind that our model cannot describe dense systems properly, since it
disregards three and higher body interactions etc. The limit c � � thus is
purely formal.

3. CENTER-OF-MASS MOTION

We aim at a renormalized one loop calculation of the center-of-mass
motion,

R2(t) :=( (Rcm(t)&Rcm(0))2) (3.1)

Remember that angular brackets denote the average over thermal forces,
a bar stands for averaging over the quenched polymer background. In the
formalism developed in Section 2 we have

R2(t)=&2q |0
ZM[[hcm], [0]] (3.2)

where

hi ({)cm=&
q
n

($(t&{)&$(&{)) (3.3)

is independent of the segment index i. Expanding the generating functional
Eq. (2.31) in the couplings u0 and v0 , we write:

ZM[[hcm], [0]]=Gcm(q, t)0+Gcm(q, t)1+O(2 loop) (3.4)

The tree approximation Gcm(q, t)0 can be found in ref. 1, Section 4.1. For
system volume Ld � � (note that the system size L is called ! in ref. 1) we
obtain:

Gcm(q, t)0=| d[r, r~ ] e&S0+i � d{ � n
i=1 (hi ({)cm ri ({))=e&q210 t (3.5)

where

10=
#
n

(3.6)

is introduced. Considering the one loop contribution we note that the cen-
ter-of-mass motion of a Rouse chain with excluded volume (=our model
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without disorder, i.e. v0=0) is independent of the excluded volume interac-
tion. Therefore all terms in an expansion of ZM[[hcm], [0]], which are
proportional to a power of u0 only, strictly vanish. We thus find:

Gcm(q, t)1=&
1
2

v2
0 l 2d | d[r, r~ ] e&S0+i � d{ � n

i=1 (hi ({)cm ri ({))

_|
p

I (B)
2 ( p) | #2 dt1 dt2 :

n

i, j=1

(r~ i (t1) p)(r~ j (t2) p) e ip(ri (t1)&rj(t2))

(3.7)

Except for the integration over p, which involves the momentum dependent
density correlation function I (B)

2 ( p), we now have to carry through the
same calculational steps as in ref. 1, Section 4.2. Taking over the interim
result before performing the momentum integration from there yields:

ZM[[hcm], [0]]=e&q210t {1+v2
0 l 2d10 t |

p
I (B)

2 ( p)(pq)2 |
t

0
10 d{(1&{�t)

_ :
n

i, j=1

e&p2Dij ({)+2pq10{+O(2 loop)= (3.8)

Here the limit L � � has been carried through. Dij (t) denotes a segment-
segment correlation function of the Rouse model:

Dij (t) :=
1

2d
( (ri (t)&rj (0))2) 0=

1
2d | d[r, r~ ] (ri (t)&rj (0))2 e&S0 (3.9)

An extensive discussion of this quantity can be found in ref. 1, appendix A.
As a next step we take the momentum derivative in Eq. (3.2) and

introduce variables y=p2
= , z= p2

| | , where the perpendicular or parallel
direction are defined with respect to q. Thus p2= y+z and pq=\- zq2.
After substituting z by ẑ=Dij ({)( y+z), dẑ=Dij ({) dz, we perform the
y-integration and obtain:

R2(t)=2d10 t {1&v2
0 l 2d (4?)&d�2

21 (1+d�2) |
t

0
10 d{(1&{�t) :

n

i, j=1

D ij ({)&1&d�2

_|
�

0
dẑ ẑd�2e&ẑI (B)

2 (- ẑ�Dij ({))+O(2 loop)= (3.10)
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We now insert the tree approximation for the two point correlation
function of the background which takes a form well known from random
phase approximation:(11)

I (B)
2 (q)=

cNDp(Nq2l 2)
1+u (B)

0 l dcNDp(Nq2l 2)
+O(1 loop) (3.11)

The Debye function averaged over polydispersity reads

Dp(x)=
2
x2 ( p~ (x)&1+x) (3.12)

The function p~ (x) introduced here is the Laplace transform of the reduced
chain length distribution p( y) :=Ncp( yN )�cp .(12) For a monodisperse
ensemble, p( y)=$( y&1), we have p~ (x)=e&x, which in Eq. (3.12) yields
the standard Debye function. An expansion of p~ (x) for small x reads
p~ (x)=1&x+ p~ "x2�2+ } } } , such that Dp(0)= p~ " exists.

In our result Eq. (3.10) we now take the continuous chain limit l � 0,
n � � with S :=nl 2=const. This amounts to replacing the sums over
segments by integrals: l 4 �n

i, j=1=�S
0 ds i ds j . We then can make all quan-

tities dimensionless by dividing by the appropriate power of S. Denoting
==4&d, our final unrenormalized one loop result reads:

R2(t)=2d10 t {1&
v0 n=�2

2(4?)d�2 1 (1+d�2) |
t

0

10 d{
S

(1&{�t)

_|
S

0

dsi dsj

S 2 \Dij ({)
S +

&1&d�2

|
�

0
dẑ ẑd�2e&ẑ

_
v0 l dcNDp(Nl 2ẑ�Dij ({))

1+u (B)
0 l dcNDp(Nl 2ẑ�Dij ({))

+O(2 loop)= (3.13)

4. RENORMALIZATION

Equation (3.13) exhibits a general feature of perturbation expansions
in polymer theory: The expansion in coupling constants in fact is an expan-
sion in (coupling constant) } (segment number)=�2. This can also be seen in
the dynamic generating functional by general dimensional arguments
(power counting) as explained in ref. 1, Section 3.4. For long chains bare
perturbation theory in dimension d<4 thus breaks down. Now the solu-
tion to this problem is well known. One can map the polymers with
microscopic segment size l on equivalent ones with greater effective
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segments of renormalized size lR . Since the total extension of the polymers
as measured e.g. by the radius of gyration remains constant, the renormalized
segment number must decrease. This way we obtain a renormalized expan-
sion parameter (ren. coupling constant) } (ren. segment number)=�2, which
stays finite even for long chains.

The construction of such a renormalization group (RG) mapping
amounts to extracting the dependence of the theory on a change of the
microscopic scale l and to absorb it into the RG mapping. In the con-
tinuous chain formulation l � 0 this microstructure dependence is hidden
in divergences (=-poles) which occur, when the space dimension reaches the
upper critical dimension d=4. In such a dimensionally regularized theory
the RG mapping is set up by introducing renormalization factors which
absorb the =-poles of the bare theory. To fix these renormalization factors
and thus the RG mapping, one has to calculate appropriate observables up
to the desired loop order. This task here however is greatly simplified by
the observation that polymer statics is contained in the dynamic theory in
the sense that one equally could calculate all static quantities in the
framework of the full dynamic theory. This means that the renormalization
of all parameters that occur also in polymer statics, i.e. all except for 10 ,
can be found by an inspection of the static theory. This is done in the next
subsection.

4.1. Static Renormalization: Quenched vs. Annealed

Calculating a static observable OS like the radius of gyration, we do
not need the full dynamic theory, but we can employ the static equilibrium
distribution instead:

Peq.[[r]; [r(B)]]=
1

ZM[[r(B)]]
e&HM[[r]; [r (B)]] (4.1)

Note that Peq. is taken for a single realization of the background distribu-
tion and thus the [r(B)] are to be considered as parameters, not as proper
degrees of freedom. Note further that in this equilibrium model the segment
coordinates [r] of the test chain are independent of t. The partition func-
tion of the test chain takes the form

ZM[[r(B)]]=| D[r] e&HM[[r]; [r (B)]] (4.2)
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where

D[r]= `
n

i=1

d dr i

(4?l 2)d�2 (4.3)

The Hamiltonian HM is given in Eq. (2.3), with ri (t) � ri . The static
average of OS then reads

(OS) =| D[r] Peq.[[r]; [r(B)]] OS[[r]; [r (B)]] (4.4)

and exhibits the well known problem of quenched static averages, namely
the occurrence of the disorder dependent partition function ZM in the
denominator of Eq. (4.1), which in general makes static averages over
quenched disorder (i.e. the bar in Eq. (4.4)) difficult to perform. Now the
well known solution to this problem is the observation, that the partition
function is self-averaging, as long as the system size 0 is infinitely large
compared to any other relevant length scale.(13�15) This argument also
applies here, since we take the thermodynamic limit 0 � � with keeping
chain lengths and hence the background correlation length !(B) as well as
the radii of gyration, Rg resp. R (B)

g fixed and finite. We rephrase the self-
averaging argument in appendix A. Let us now discuss the consequences:

By means of the self-averaging property, ZM=ZM , we can write
Eq. (4.4) as:

(OS) =| D[r] OS[[r]; [r(B)]] e&HM[[r]; [r (B)]]<ZM[[r(B)]] (4.5)

Now we have a separate average in numerator and denominator, i.e. an
average as in the corresponding annealed system. But such a system is
nothing else than the well known static ternary system of two polymer
species in solution.(16�18) Indeed, taking into account Eq. (2.10) we can
write out the average in Eq. (4.5) as:

(OS)=
1
Z | D[r, r(B)] OS[[r]; [r(B)]] e&HM[[r]; [r (B)]]&HM

(B)[[r (B)]] (4.6)

As usual the partition function Z denotes the integral in Eq. (4.6) with
OS#1. This is to be compared with static averages in annealed ternary
systems. The chains in a ternary solution of M1 polymers of sort 1 and M2

polymers of sort 2 interact via three couplings u (ab)
0 =u (ba)

0 ; a, b # [1, 2];

182 Mu� ller



representing the intrachain (a=b) resp. interchain (a{b) repulsion.
Together with the chain connectedness the Hamiltonian then reads:

H12[[r(1); r(2)]]=
1

4l 2 :
2

a=1

:
Ma

m=1

:
nm

(a)

j=2

(r (a)
m, j&r (a)

m, j&1)2

+
1
2

:
2

a, b=1

u (ab)
0 l d | d dr \(a)(r) \ (b)(r) (4.7)

where

\(a)(r)= :
Ma

m=1

:
nm

(a)

j=1

$d (r&r (a)
m, j) (4.8)

is the segment density of the polymer species a=1, 2. Let the tracer chain
in our original system be of sort 1, i.e. M1=1, n (1)

1 =n, the background
chains be of sort 2. Comparing HM+H (B)

M , Eq. (4.6), with the ternary
Hamiltonian as above, we indeed find complete agreement. The couplings
can be identified as the three ternary couplings:

u0=u (11)
0 , u (B)

0 =u (22)
0 , v0=u (12)

0 (4.9)

Having established the connection of the static behaviour of our model to
annealed ternary polymer systems, we now can simply adopt the corre-
sponding renormalization scheme. The one loop results we quote here can
be found in ref. 18 (note that we set the parameter bu introduced there to
bu#1 from the outset). The mapping of the bare static parameters (l; n, N;
u0 , u (B)

0 , v0) to the corresponding renormalized quantities (lR ; nR , NR ; u,
u(B), v) takes the form:

nl 2=nR l 2
R {1&

u
=

+O(2 loop)= (4.10)

Nl 2=NR l 2
R {1&

u (B)

=
+O(2 loop)= (4.11)

(4?)&d�2 u0 l &==ul &=
R

1
2 {1+

4u
=

+O(2 loop)= (4.12)

(4?)&d�2 u (B)
0 l &==u(B)l &=

R

1
2 {1+

4u(B)

=
+O(2 loop)= (4.13)

(4?)&d�2 v0 l &==vl &=
R

1
2 {1+

u+u(B)

=
+

2v
=

+O(2 loop)= (4.14)
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The renormalization of l, n, u0 resp. l, N, u (B)
0 is just as in the corresponding

binary systems. Only the ternary parameter v0 is renormalized by all three
couplings.

Now aiming at a renormalization of the center-of-mass motion a
glance at Eq. (3.13) immediately reveals that any possible divergence in the
one loop integral could be subtracted only by a renormalization of 10 ,
since this is the only parameter that occurs already in the tree result. All
=-poles of Eqs. (4.10)�(4.14) contribute, if inserted into Eq. (3.13), only in
2 loop. This was to be expected, since R2(t) is a purely dynamic quantity.
The center-of-mass motion in one loop thus fixes the one loop renormaliza-
tion of 10 only, to which we will turn now.

4.2. Dynamic Renormalization

We now search for possible =-poles in the one loop contribution to
Eq. (3.13). Divergences are to be expected for large frequencies and
momenta (UV-divergences), that is to say for short times and short seg-
ment separation. We therefore introduce appropriate dimensionless time
and distance variables: {̂ :=10{�S and ŷ :=(si&sj)�S�- 2{̂ together with
ŝ :=sj�S. In these variables, the segment-segment correlation function
Dij ({), Eq. (3.9), can be written as:

Dij ({)
S

=- 2{̂ F( ŷ, ŷ+2ŝ�- 2{̂, 2�- 2{̂) (4.15)

The properties of the function F( y, z, *) are discussed in great detail in
appendix A of ref. 1. We here simply cite the following two representations,
the latter being suitable for an analysis of the behaviour for short times and
short segment separation:

F( y, z, *)=
1
*

+* \1
3

&
z
*

+
y2+z2

*2 +
& :

�

k=1

*
?2k2 e&?2k2�*2 \cos

2?ky
*

+cos
2?kz

* + (4.16)

=| y|+ :
�

&=&�

[ f ( y+&*)&| y+&*|+ f (z+&*)&|z+&*| ] (4.17)

The function f ( y) is defined as

f ( y)=
e&y2

- ?
+ y erf( y) (4.18)
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where erf( y) denotes the error function. The one loop result Eq. (3.13),
written completely in dimensionless variables then reads:

R2(t)
2d10t

=1&
v0n=�2

2(32?2)d�4 1 (1+d�2) |
T

0
d{̂ {̂&d�4(1& {̂�T ) |

�

0
dẑ ẑd�2e&ẑ

_|
1

0
dŝ |

(1& ŝ)�- 2{̂

&ŝ�- 2{̂
dŷ F( ŷ, ŷ+2ŝ�- 2{̂, 2�- 2{̂)&1&d�2 H({̂, ẑ, ŝ, ŷ)

+O(2 loop) (4.19)

The dimensionless time variable T is

T=
10 t
nl 2 (4.20)

The function H has its origin in the tree approximation of the density
correlation function:

H({̂, ẑ, ŝ, ŷ)=

v0 l dcNDp \N
n

ẑ

- 2{̂ F( ŷ, ŷ+2ŝ�- 2{̂, 2�- 2{̂)+
1+u (B)

0 l dcNDp \N
n

ẑ

- 2{̂ F( ŷ, ŷ+2ŝ�- 2{̂, 2�- 2{̂)+
(4.21)

In the following we will drop the hats in the integration variables {̂, ẑ, ŝ,
and ŷ.

Let us first discuss what happens in the case of ref. 1. To this end we
as before take the formal limit c � � of infinite segment concentration,
such that H � v0�u (B)

0 . The divergent part in d=4 then comes from the
integration:

|
T

0
d{ {&d�4 |

1

0
ds |

(1&s)�- 2{

&s�- 2{
dy F( y, y+2s�- 2{, 2�- 2{)&1&d�2 (4.22)

For small { we can replace the right hand integrations by

|
1

0
ds |

�

&�
dy F( y, �, �)&1&d�2 (4.23)
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where F( y, �, �)= f ( y), which can easily be derived from Eq. (4.17),
taking into account the asymptotic behaviour f (x)t

x � \� |x|. In four
dimensions Eq. (4.23) thus yields two times the finite constant

I :=|
�

0
dy f ( y)&3=3.587. . . (4.24)

The remaining {-integral diverges for d=4 at the lower bound:

|
T

0
d{ {&d�4=

4
=

(1+O(=)) (4.25)

All together this ends up in a one loop divergence tI�=, which has to be
absorbed in a renormalization of 10 .

Now in our system, where c is small and finite, the long ranged density
correlation function renders the one loop term finite in four dimensions.
This is not hard to prove if one takes into account that the Debye function
obeys (cf. Eq. (3.12))

Dp(x) t
x � �

2�x (4.26)

where the right hand side actually is an upper bound. This means that for
H, Eq. (4.21), the following inequality holds:

0<H({, z, s, y)<
2v0 l dcn

z
- 2{ F( y, y+2s�- 2{, 2�- 2{) (4.27)

Hence an additional factor - { occurs, which alters the power of { in
Eq. (4.19) from {&d�4 to {1�2&d�4 and thus improves the convergence for
small values of {. Together with F( y, z, *)>F( y, �, �) it is easy to show
that the right hand side of Eq. (4.19) exists for 2<d<6. To see the role of
a finite correlation length !(B) in this connection more clearly we note that
the unrenormalized tree approximation of the latter in the semidilute limit
reads (cf. Eq. (3.11)):

!(B)2
=&

1
2

2q |0
ln I (B)

2 (q)t
R2

g

u (B)
0 l dcn

(4.28)

Concentrating on the dangerous short time part of the time integral in
Eq. (4.19) we according to Eqs. (4.21), (4.26) write:
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|
0

d{ {&d�4 2v0 l dcn - 2{ f ( y)�z

1+2u (B)
0 l dcn - 2{ f ( y)�z

=
v0

u (B)
0

|
0

d{ {1�2&d�4 _- {+
z

2 - 2 f ( y) \
! (B)

Rg +
2

&
&1

(4.29)

In case of a microscopic correlation length !(B) � 0 the time integral in
d=4 would not exist.

The essence of this analysis is that up to the order of one loop 10

needs no renormalization:

10=1R[1+O(2 loop)] (4.30)

4.3. Renormalized Center-of-Mass Motion

Now we are prepared to renormalize the one loop result Eq. (4.19).
Since in this loop order no =-poles show up, this procedure amounts to a
simple replacement of the bare parameters by their renormalized counter-
parts according to Eqs. (4.10)�(4.14), (4.30). Note that cp=c�N is not
renormalized, since neither the volume 0 nor the number of polymer
chains M in the background is altered by renormalization. The reduced
chain length distribution function (see Eq. (3.12)) is a normalized function
of the RG invariant ratio n(B)�N and thus is invariant under renormaliza-
tion itself. Denoting the renormalized time as

TR=
1Rt

nR l 2
R

(4.31)

we obtain:

R2(t)
2dnR l 2

R TR
=1&

vn=�2
R

22+d�41 (1+d�2) |
TR

0
d{ {&d�4(1&{�TR) |

�

0
dz zd�2e&z

_|
1

0
ds |

(1&s)�- 2{

&s�- 2{
dy F( y, y+2s�- 2{, 2�- 2{)&1&d�2

_HR({, z, s, y)+O(2 loop) (4.32)
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The renormalized function HR reads

HR({, z, s, y)=

vcR NRDp \NR

nR

z

- 2{ F( y, y+2s�- 2{, 2�- 2{)+
1+u(B)cRNRDp \NR

nR

z

- 2{ F( y, y+2s�- 2{, 2�- 2{)+
(4.33)

where we defined a dimensionless renormalized concentration as

cR=
(4?)d�2

2
l d

RcpNR (4.34)

To make use of a result expressed in renormalized parameters we have to
find the explicit RG-mapping, which connects them with the physical
parameters of the bare theory. This is a standard procedure of renor-
malized perturbation theory, which is done by an integration of flow equa-
tions. The latter are obtained by taking the partial derivative &lR ���lR of
Eqs. (4.10)�(4.14), keeping all bare parameters fixed. Let us briefly rephrase
some well known results concerning the flow of the couplings in ternary
polymer systems:(16�18) The RG flow of the three couplings has 8 fixed
points. In the limit of long chains, lR � �, there is only one globally stable
(IR-stable) fixed point, attracting the flow from all directions. This is the
symmetric excluded volume fixed point, where all three couplings attain the
same fixed point value:

u*=u(B)*=v*= 1
4 =+ 21

128=2+O(=3) (4.35)

At this fixed point the RG mapping takes the simple form:(18)

lR=B1 \ n
nR+

&

=B2 \ N
NR+

&

(4.36)

where B1 , B2 denote nonuniversal constants, which depend on the chemical
microstructure of the two polymer species. The critical exponent & governs
the size of an isolated excluded volume chain without disorder as measured
e.g. by the radius of gyration, Rgtn&:

&= 1
2+ 1

16=+O(=2) (4.37)

All the other fixed points are repulsive in at least one direction. The
symmetric Gaussian fixed point u=u(B)=v=0, in particular, is globally
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repulsive. To reach such fixed points it needs a careful adjustment of the
nonuniversal parameters of the system. In the sequel we therefore restrict
ourselves to the symmetric excluded volume fixed point Eq. (4.35), which
governs the generic behaviour in the limit of long chains. A brief discussion
of other fixed points can be found in Appendix B. We note that we could
evaluate our theory also in all the crossover regime among the different
fixed points. Due to the lack of data we however do not pursue this
program.

We should stress that the existence of stable fixed points is necessary
for the occurrence of pure power laws, but by no means necessary for an
application of RG methods. In the case of Gaussian disorder(1) there is in
fact no such fixed point in the coupling, which leads to nonlinear scaling
behaviour. As we will see in the next section, the occurrence of a stable
fixed point here in the semidilute limit leads to asymptotic dynamic power
laws with new exponents.

Having fixed the RG mapping one final step is to be done, namely to
choose the renormalized length scale. The expansion parameter v0n=�2 w�ren.

vn=�2
R in our renormalized result Eq. (4.32) suggests to rely on the standard

choice nRtO(1), which guarantees a finite expansion parameter. This
choice implicitly fixes the renormalized length scale lR to be of the order of
the extension of the moving coil, since in tree approximation the radius of
gyration behaves as R2

gtnl 2 w�ren. nR l 2
R . We should mention that although

this choice is always possible, in many cases it is not the best one. It, for
instance, in the semidilute limit leads to logarithmic singularities, which
have to be cured by reexponentiating the =-expansion. In favorite cases
such problems can be avoided by a more sophisticated choice of lR . Quite
generally one can say that the best and most physical choice of the renor-
malized length scale is to choose it of the order of the smallest relevant
length scale in the problem. For the static problem of a single polymer in
solution there is only one macroscopic length scale Rg , thus lRtRg .
In case of semidilute polymer solutions however the blob size !c (concen-
tration blobs) is the appropriate smallest macroscopic length scale, (19)

while in the context of polymer dynamics time blobs !t have been invented
successfully.(7) Trying to generalize these ideas to our system, where both
!c and !t show up, it turns out that they lead to divergences in the one
loop result which can not be handled. This could have been expected. The
reason is that any blob idea is based on the existence of two separated
regions: Inside the blob, where interactions are present and outside the
blob, where we essentially have a ``free'' theory without nontrivial interac-
tions or correlations. It is this separation that does not work in our case:
Looking at short times, such that the time blob is the smallest length scale,
!t<!c , we have inside of the blob dynamic correlations, but on scales
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larger than !t the theory is not trivial since the segments still can be inside
a concentration blob, yielding nontrivial correlations. In the Gaussian
case(1, 7) this problem does not arise since the correlation length of the dis-
order is microscopic: !ctl � 0. For longer times such that !c<!t we run
into the same problems: Although the interaction is screened on scales
>!c , we still have nontrivial dynamic correlations. Aiming at a calculation
of dynamic quantities these correlations ruin the simple picture of a chain
being composed of uncorrelated concentration blobs as in the static theory
of semidilute polymer systems.

We therefore rely on the =-expansion together with the standard choice
of the renormalized length scale by fixing nR=1. Furthermore we set the
couplings to their fixed point value u*. Equation (4.36) then fixes all renor-
malized quantities that show up on the right hand side of Eq. (4.32) as a
function of the bare parameters n, N, c, and t. The bare parameters them-
selves then occur in certain dimensionless scaling combinations only. The
corresponding scaling variables Y� , S� , and T� are defined as follows:

NR =
nR=1 NR

nR
=

N
n \B2

B1+
1�&

=: Y� (4.38)

u*cR =
(4?)d�2

2
u*Bd

2cpN d&NR
1&d&

=
nR=1

cnd&&1 (4?)d�2

2
u* \B2

B1 +
1�&

Bd
1=: S� (4.39)

TR =
nR=1 1Rt

l 2
R

=
t

n1+2&

#
B2

1

=: T� (4.40)

Regarding TR one should remember that up to the order of one loop 10

is not renormalized, i.e. 1R=10=#�n, cf. Eqs. (3.6), (4.30).

5. RESULTS

Having finished the previous, more technical section, we here first
collect and interpret our general results for the center-of-mass motion: The
quantity we want to investigate is the normalized center-of-mass motion

F :=
R2(t)

2dnR l 2
R

(5.1)
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It describes the mean squared center-of-mass displacement R2(t) of a chain
of length n, divided by the radius of gyration R2

gtnR l 2
RtB2

1 n2& of the
tracer chain without disorder. According to the discussion at the end of the
last section this function depends on three dimensionless scaling variables
as defined in Eqs. (4.38)�(4.40):

F=F(S� , Y� , T� ) (5.2)

As a function of these variables the normalized center-of-mass motion F

is a universal function, i.e. independent of the precise microstructure of the
polymers.

The scaling variables have a simple interpretation. T� measures time t
on the scale of the longest relaxation time tn1+2& of a free draining chain
in the excluded volume limit:

T� tt�n1+2& (5.3)

The variable Y� is proportional to the ratio of the mean chain length N of
the background polymers and the chain length n of the moving polymer:

Y� tN�n (5.4)

The overlap variable S� requires a more detailed discussion: In the case of
a binary semidilute polymer system, chain length and concentration occur
only in the dimensionless combination S� (B)

tcp R (B) d
g tcNd&&1.(8) The

overlap S� (B) describes the number of chains which are present in the
volume occupied by one chain. In the dilute limit we have S� (B) � 0, while
the semidilute limit is given by S� (B) � �. Now in our case we are inter-
ested in the properties of a tracer chain of different species and length,
which moves in such a background. As observed in refs. 18 and 20, the
appropriate overlap type variable at the symmetric excluded volume fixed
point in such a ternary problem is S� tcpRd

gN�n (which is called s(S) in
ref. 18). If we divide the background chains into blobs of length n (assume
N�n, see below), then cpN�n measures the number concentration of these
blobs in the background. S� is thus the number of such blobs which overlap
in a volume Rd

gtnd& occupied by the moving chain. This variable ensures
that it is irrelevant for the moving polymer, wether the background blobs
belong to different chains or not, as it should be, since the moving chain
at a given time does not know what happens on scales larger than its own
extension. Note that S� depends on c and n only:

S� tcnd&&1 (5.5)

The proportionality constants in Eqs. (5.3)�(5.5) depend on the chemical
microstructure of the polymers (cf. Eqs. (4.38)�(4.40)). In the framework of
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an RG analysis they can not be calculated reliably but they have to be
taken as fit parameters instead.

Quite generally we expect the center-of-mass motion to become inde-
pendent of N if the background chains are much longer than the extension
of the moving chain, Y� >>1. This conjecture becomes explicit in the one
loop function H*R , Eq. (4.33):

H*R(S� , Y� ; {, z, s, y)=

S� Y� Dp \Y�
z

- 2{ F( y, y+2s�- 2{, 2�- 2{)+
1+S� Y� Dp \Y�

z

- 2{ F( y, y+2s�- 2{, 2�- 2{)+
(5.6)

where the star signals, that we have set the couplings to their fixed point
value u*. Note further that we have made the dependence on the scaling
variables S� , Y� explicit now. Due to the asymptotic behaviour of the
Debyefunction Dp(x)t

x � � 2�x, cf. Eq. (4.26), we in the limit Y� � �
obtain:

H*R(S� , �; {, z, s, y)=
2S� - 2{ F( y, y+2s�- 2{, 2�- 2{)�z

1+2S� - 2{ F( y, y+2s�- 2{, 2�- 2{)�z
(5.7)

such that the dependence on Y� and thus on N in one loop drops out indeed.
More problematic is the opposite limit Y� � 0, since in Eq. (5.6) this limit
would compete with the semidilute limit S� � �. Now having in mind the
discussion on the renormalized length scale at the end of the previous sec-
tion, one may rightly ask wether the choice nR=1 for Y� � 0 is appropriate
any longer. Since in the limit N<<n the length scale set by the moving
chain is much greater than those of the background chains, one would
argue for a choice NR=1 instead. In Eq. (5.6) this would lead to a replace-
ment of S� Y� by the overlap of the background S� (B)

tcN d&&1. The limit
Y� � 0 then appears to be unproblematic, resulting in S� (B)Dp(Y� z�- 2{ F( y,
y+2s�- 2{, 2�- 2{)) =Y� � 0 S� (B)p~ ", cf. Eq. (3.12). But this is not the whole
story, since H*R then would be independent of {, such that the integral
�TR

0 d{ {&d�4 in Eq. (4.32) diverges in d=4 at the lower bound (a feature
which also arises in the semidilute limit, see below). These problems
occurring in a RG treatment of the limit of a very long chain in a system of
moderately long chains are known to show up even in polymer statics.(8, 18, 21)

On a heuristic level it is clear that a semidilute system of very short back-
ground chains will eventually lead to the universality class of short range
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Gaussian random potentials. As a consequence of the new singularities for
Y� � 0, a precise analysis of this limit would however require a reconsidera-
tion of the renormalization of the couplings as well. We will not pursue this
here and restrict ourselves in the following to n�N, excluding the limit
Y� � 0 (see also Appendix B).

Calculating the explicit scaling function we proceed with an =-expan-
sion. In this context two things must be remembered: Firstly it is important
to note that the renormalized function HR itself, Eq. (4.33), must not be
expanded, since such an expansion would destroy the physical idea of
screening. The structure of HR comes from a resummation in the treatment
of many chain systems and thus has nothing to do with the critical
behaviour treated by renormalization and =-expansion. Secondly, to extract
anomalous power laws from an =-expansion we as usual have to exponen-
tiate the perturbative result. Inserting Eq. (4.35) into Eq. (4.32), the fixed
point behaviour of the center-of-mass motion in first order =-expansion
hence follows as:

F(S� , Y� , T� )
T�

=exp {&
=

64 |
T�

0
d{ {&1(1&{�T� ) |

�

0
dz z2e&z |

1

0
ds

_|
(1&s)�- 2{

&s�- 2{
dy F( y, y+2s�- 2{, 2�- 2{)&3

_H*R(S� , Y� ; {, z, s, y)+O(=2)= (5.8)

where H*R is given in Eq. (5.6).

5.1. Diffusion Constant

We start with analyzing the diffusion constant D. In a way this is the
simplest quantity, since here the dependence on time drops out due to the
limit t � �:

D := lim
t � �

R2(t)
2dt

(5.9)

We normalize this quantity by division by the diffusion constant of the free
Rouse chain, D0=#�n=10 , Eq. (3.6). From Eq. (5.8) we obtain
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D(S� , Y� ) :=
D
D0

= lim
T� � �

F(S� , Y� , T� )
T�

=exp {&
=

64 |
�

0
d{ {&1 |

�

0
dz z2e&z

_|
1

0
ds |

(1&s)�- 2{

&s�- 2{
dy F( y, y+2s�- 2{, 2�- 2{)&3

_H*R(S� , Y� ; {, z, s, y)+O(=2)= (5.10)

In the dilute limit, H*RtS� � 0, cf. Eq. (5.6), we of course recover Rouse
behaviour,

lim
S� � 0

D(S� , Y� )=1 (5.11)

Recall that the intrachain excluded volume interaction u, which is still pre-
sent also for S� � 0, does not affect the center-of-mass motion as long as the
disorder vanishes. For small S� Eq. (5.10) can be evaluated as a virial
expansion in powers of S� .

Much more interesting is the limit of strongly overlapping chains,
S� >>1. Since limS� � � H*R=1 (cf. Eq. (5.6)), a glance at Eq. (5.10) imme-
diately reveals that this limit if taken naively would produce a divergence
due to the integral �0 d{ {&1. This was to be expected from the discussion
of Section 4.2, since here we obtain a structure similar to the limit c � �
in the unrenormalized result, which is singular in d=4. The resulting =-pole
in ref. 1 induced a nontrivial renormalization of 10 . Here it translates into
a logarithmic divergence in S� . To extract this divergence we exploit the
asymptotic behaviour of the integrand in Eq. (5.10) for small { (cf. Eqs.
(4.23), (4.26)):

H*R(S� , Y� ; {, z, s, y) =
{ � 0 2S� - 2{ f ( y)�z

1+2S� - 2{ f ( y)�z
(5.12)

With this asymptotic form we can perform the dangerous part of the {
integral near the lower bound in Eq. (5.10) and find the desired logarithmic
divergence:

|
1

0
d{ {&1 |

�

0
dz z2e&z |

1

0
ds |

�

&�
dy f ( y)&3 2S� - 2{ f ( y)�z

1+2S� - 2{ f ( y)�z
t

S� � �
8I ln S�

(5.13)

where I=3.587... is given in Eq. (4.24). Isolating this divergent term in
Eq. (5.10) we obtain

D(S� , Y� )=S� &=I�8+O(=2)R� (S� , Y� ) (5.14)
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where the residual term R� stays finite in the semidilute limit:

lim
S� � �

R� (S� , Y� )=exp(0.56=+O(=2)) =
d=3

1.75 (5.15)

Note that the right hand side of Eq. (5.15) is independent of Y� and of poly-
dispersity. This was to be expected, since in the limit of strongly overlapping
background chains, the moving polymer effectively feels uncorrelated con-
centration blobs of the background only. The chain length of the back-
ground polymers completely drops out. The result Eq. (5.14) shows that
the diffusion coefficient in the semidilute limit obeys a power law. With
Eqs. (4.37), (5.5) and d=4&= we find:

D=D0D(S� , Y� ) t
S� >>1 c&=I�8+O(=2)n&1&=I�8+O(=2) (5.16)

In leading nontrivial order of =-expansion this yields in three dimensions
(==1)

Dtc&0.45n&1.45 (5.17)

Compared to Rouse behaviour, D0tn&1, we obtain a slowing down,
which however is not as strong as in the reptation picture, Drept.tn&2.(2)

One concludes that the hindering due the disordered excluded volume
interactions of a frozen semidilute background is not enough to obtain a
scaling behaviour as if true topological constraints were present. Also the
dependence on the monomer concentration is comparatively weak. Repta-
tion, combined with simple scaling considerations would yield a much
stronger slowing down with increasing concentration: Drept.tc&1.31n&2.
The power &1.31 follows from the requirements that both Drept.�D0 must
be a function of S� only and Drept.tn&2. In the reptation case such a scaling
argument however is dubious, since it neglects the fact that topological
constraints generally define a new length scale (entanglement length),
which is different from !c , the size of concentration blobs.(22) We close this
short discussion of power law behaviour with the remark that the numeri-
cal values for the exponents we have obtained should not be taken too
serious, since they are based on a first order =-expansion.

In Fig. 1 we have plotted the full dependence of the normalized
diffusion coefficient on S� according to Eq. (5.10). We have chosen a
monodisperse ensemble, i.e. all chains of the background have the same
length N. This simply amounts to a replacement of Dp , Eq. (3.12), by the
standard Debye function D(x)=2�x2(e&x&1+x). Regarding the chain
lengths we consider the two cases Y� =1, which holds if n=N and the

195Diffusion of Test Chain in Quenched Semidilute Polymers



File: 822J 233328 . By:XX . Date:23:06:99 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 2275 Signs: 1708 . Length: 44 pic 2 pts, 186 mm

Fig. 1. Normalized diffusion constant D(S� , Y� )=D�D0tnD as a function of the overlap
S� tcnd&&1, plotted for a monodisperse background and Y� =1 resp. Y� =� (dashed). Dotted:
The asymptotic power law behaviour according to Eqs. (5.14), (5.15).

moving chain is chemically identical to the background polymers
(B1=B2), resp. Y� =�, which describes the case of a long tracer chain that
moves in a frozen background of much longer chains, N>>n. Note that the
curves are universal, i.e. independent of microstructure effects. In the semi-
dilute limit the diffusion constant becomes independent of Y� : Both curves
obviously coincide for S� >>1 and follow the asymptotic form 1.75S� &0.45 of
Eqs. (5.14), (5.15). Quite generally the dependence on Y� is very small, a
property also known from static quantities.(18) Note further that D(S� , �)
<D(S� , 1). The reason is that keeping c, n and thus S� fixed, an increasing
N means that the chain concentration of the background cp=c�N
decreases. With rising Y� the constant number of background segments
hence belong to fewer and fewer chains. But the more the background
segments are correlated due to chain connectivity, the more effective is the
hindering: The diffusion constant drops with increasing Y� .

5.2. Full Time Dependence

As explained in the introduction we in a semidilute background expect
three time regimes:

(i) For very short times T� �S� &2 the moving polymer does not
notice its environment, i.e. we expect essentially free diffusion. In this ultra-
short time regime the polymer moves a distance much less than a correla-
tion length of the background: R(t)<<!(B). In ref. 1 this regime does not
exist, since the correlation length is microscopic: !(B) � 0.
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(ii) What follows is a short time regime T� �1 but T� S� 2>>1, where
the polymer interacts with the background and slows down. The motion
then is subdiffusive.

(iii) In the long time regime T� >>1, i.e. R(t)>>Rg , we obtain a dif-
fusive motion of the polymer coil as a whole, but with reduced diffusion
coefficient.

This supposed general behaviour can be confirmed explicitly in our
one loop result Eq. (5.8). Note that in this section we always assume
strongly overlapping chains: S� >>1.

(i) Ultra-Short Time Behaviour. For vanishing T� we have

lim
T� � 0

F(S� , Y� , T� )
T�

=1 (5.18)

which means that there must be an ultra-short time regime where the
correction to the leading behaviour Eq. (5.18) remains small. Indeed, for
times T� �S� &2, even for very large S� no divergences in the time integral
show up. This can be seen from Eq. (5.12), which reveals that as long as
- { S� is small, the one loop correction in Eq. (5.8) is small.

(ii) Short Time Behaviour. Leaving the ultra-short time regime
we analogous to Eq. (5.13) have to extract the asymptotic behaviour.
Using Eq. (5.12), we find

|
T�

0
d{ {&1 |

�

0
dz z2e&z |

1

0
ds |

�

&�
dy f ( y)&3 2S� - 2{ f ( y)�z

1+2S� - 2{ f ( y)�z

t
S� � �

8I ln - T� S� (5.19)

so that

F(S� , Y� , T� )
T�

=(- T� S� )&=I�8+O(=2) R(S� , Y� , T� ) (5.20)

In the semidilute limit R(S� , Y� , T� ) exists and is independent of N and
polydispersity, as it should be (cf. Eq. (5.15)):

lim
S� � �

R(S� , Y� , T� )=: R� (T� ) (5.21)
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Note that a time dependence still remains, such that Eq. (5.20) even in the
semidilute limit does not yield a pure power law with respect to time.
However, taking in Eq. (5.21) the limit T� � 0, we find:

R� (0)=exp(0.30=+O(=2)) =
d=3

1.35 (5.22)

This implies that for large overlap there exists an intermediate regime

1<<T� S� 2, T� <<1 (5.23)

i.e. const. c&2n3+2&(1&d )<<t<<const. n1+2&, where R2(t) approaches a
power law:

R2(t)tc&=I�8+O(=2)n&1+O(=2)t1&=I�16+O(=2)
t

d=3 c&0.45n&1t0.78 (5.24)

This time dependence again lies between Rouse behaviour, R2(t)tt, and
the short time reptation result, R2(t)tt0.5. The trivial dependence on chain
length tn&1 should survive in all orders of =-expansion, if we can think of
the chain as being composed of n�n! time blobs of size !t , which move
independently from each other.(7) The latter condition is fulfilled for
1<<T� S� 2, which implies !c<<!t , so that the semidilute background can
not build up correlations between the blobs.

(iii) Long Time Behaviour. To describe the long time behaviour
T� >>1 we have to do the same considerations as for the diffusion constant,
Eqs. (5.13)�(5.15). Equation (5.20) is not appropriate since limT� � �

R(S� , Y� , T� ) does not exist. As above we obtain:

F(S� , Y� , T� )
T�

=S� &=I�8+O(=2)R� (S� , Y� , T� ) (5.25)

Note that limT� � � R� (S� , Y� , T� )=R� (S� , Y� ) of Eq. (5.14), such that the long
time behaviour is purely diffusive:

R2(t) =
T� >>1

2dD0 tS� &=I�8+O(=2)R� (S� , Y� )=2dDt (5.26)

The diffusion constant D has been discussed in Section 5.1.
In Fig. 2 we have plotted the universal time dependence of F=

R2(t)�2dnR l 2
R according to Eq. (5.8) for three values S� =10, 100, 1000 of

the overlap. As before we restrict ourselves to a monodisperse ensemble.
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Fig. 2. Full time dependence of the normalized center-of-mass motion FtR2(t)�n2& as a
function of normalized time T� tt�n1+2& for three values of the overlap (S� =10, 100, 1000)
together with the free case (S� =0). The quenched background is monodisperse and Y� =1.

Since the dependence on Y� is expected to be weak (cf. Fig. 1), we here show
the case of identical chains only: Y� =1. All curves start out with a Rouse
like ultra-short time behaviour, then bend down to anomalous diffusion
and end up with normal diffusion again, R2(t)tt, but with reduced diffu-
sion coefficient D as compared to the Rouse value D0 . For large overlap
one may identify an effective short time power law regime (R2(t)tt0.8 for
S� =1000), the value of the power depending on the overlap S� however.
Only in the asymptotic limit S� � �, T� � 0, with T� S� 2 � �, we obtain the
true universal short time power law of Eq. (5.24): R2(t)tt0.78.

6. CONCLUSIONS

We have presented a systematic perturbative approach to polymer
dynamics in a quenched many chain background on the basis of standard
RG methods. The model describes the hindering due to the excluded
volume repulsion of a test chain moving in a frozen semidilute polymer
background. Topological constraints are not included. We carried through
an explicit one loop calculation for the center-of-mass motion and iden-
tified the scaling variables. In the semidilute limit we have found power law
behaviour with new exponents. They exhibit a slowing down of the polymer
motion with increasing overlap which however is not as pronounced as in the
reptation picture.
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Trying to compare our results with experimental measurements we are
confronted with a very sparse amount of data available. Clearly real
experiments always involve entanglement effects. On the other hand one
might argue that for low concentrations c (but very long chains n, such
that we still work with great overlap S� tcnd&&1), entanglement might not
be that important, at least for short times. A further problem is that in real
experiments we have an annealed random background, while our theory is
set up for a quenched average. Only in case of a gel, where the crosslinks
fix the network to a large extend, or, at least partially, if we deal with back-
ground chains that are much longer than the test chain one might advocate
for a separation of time scales, such that the random background may be
taken as effectively frozen as compared to the tracer polymer. Nevertheless
a quantitative comparison between our theory and real experiments does
not seem to be very promising.

We therefore must rely on computer experiments. The problem here is
that most of the work we are aware of focuses on the simulation of polymer
melts, aiming at a verification of the reptation predictions. This means
fairly concentrated systems and in most cases annealed averages, i.e. all the
chains move simultaneously. Kremer(23) in his early work performed one
simulation with one mobile test chain in a frozen environment of M=6
other chains, each of length n=200, but he did not vary chain length and
concentration, making a quantitative comparison impossible. The one
simulation he carried through moreover belongs to the concentrated
regime, where entanglements are not negligible. The same objections hold
for many other simulations, a review can be found in ref. 22.

For a real test of the theory one would need a quenched polymer
background at very low concentration but with very long chains, such that
we achieve a high enough overlap S� >>1 to observe the asymptotic scaling
behaviour we predicted. Simulations in this direction would be most
welcome. For a more comprehensive insight into the dynamics of our
model we furthermore started to calculate the time dependent segment-
segment correlation function, which exhibits a much richer dynamic
behaviour.

APPENDIX A. QUENCHED VS. ANNEALED IN
POLYMER STATICS

As announced in the main text, we here will shortly rephrase the self-
averaging argument of refs. 14 and 15: Divide the space into boxes of
length a. A state of the chain [r] could equally be described by the starting
point r1 and the internal configuration [c], where ci=ri&ri&1 (i=2,..., n).
Splitting the integration over r1 in an integration over a box volume and
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Fig. 3. Illustration of the self-averaging property of the partition function of a single chain
in disorder.

the sum over all boxes, such that r1=k+s, k # a } Zd, we can write
Eq. (4.2) as

ZM[[r(B)]]=| D[c] |
a

0

d ds
(4?l 2)d�2 :

k # a } Zd

e&HM (A.1)

Now concentrate on one fixed internal configuration s and [c] of the parti-
tion function in Eq. (A.1) (see Fig. 3). Then with respect to disorder
average all the summands (=boxes in Fig. 3) in the infinite (0=Ld � �)
sum �k # a } Zd are statistically independent, if all segments in one box are
separated more than a background correlation length from all segments of
all other boxes. This is guaranteed by choosing the box size to be of the
order a-O(Rg)+O(R (B)

g ), taking into account that !(B)�R (B)
g . The law of

large numbers then yields that with probability one �k # a } Zd e&HM=
�k # a } Zd e&HM holds.

To illustrate this argument we in ref. 24 carried out an explicit one
loop calculation for the two point density correlation function between the
tracer chain and the background chains. This is a static observable, that
depends on the interchain coupling already in tree approximation. We on
the one hand calculated the annealed average via diagrammatic perturba-
tion theory of ternary solutions, on the other hand we calculated the
quenched average via the dynamic functional. Note that in this case we
used the dynamic functional to calculate a static quantity, since in
dynamics the quenched average is carried out easily (no problems with the
partition function in the denominator as in quenched static averages). The
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lengthy calculations within the framework of two completely different
calculation schemes yielded two results, which for 0=Ld � � exactly
coincide indeed.

APPENDIX B. A BRIEF DISCUSSION OF OTHER
FIXED POINTS

In the main text we exclusively evaluated our theory at the symmetric
excluded volume fixed point, where all three couplings u, u(B) and v coin-
cide and are equal to the binary fixed point value u*{0. One may ask
what comes out if we would have dealt with Gaussian chains, where one
or both couplings u or u(B) vanish. To this end one might set e.g. u (B)=0
in our one loop result Eq. (4.32). A short glance at Eq. (4.33) immediately
reveals, that in this case the limit of strongly overlapping chains cRtS� >>1
can not be taken, since the one loop correction term simply diverges tS� .
(We always assume v{0, since otherwise the test chain is decoupled from
the background.)

This problem is closely related to the breakdown of sreening in ternary
semidilute solutions. Generally speaking the intrachain coupling u of a test
polymer in a solution of other chains becomes screened, u � u~ , where the
renormalized screened interaction u~ reads:(18)

u~ (z)=u
1+\1&

v2

uu(B)+ u(B)cRNRDp \NR

nR
z+

1+u(B)cRNR Dp \NR

nR
z+

(B.1)

Here z denotes a momentum type variable. Being interested in the large
scale properties we can set z=0. At the symmetric fixed point we then
obtain complete screening in the semidilute limit: u~ =0 for cRtS� � �.
(We however note that u~ =u in the limit NR � 0: Short background chains
can not screen the interactions within a long test chain, a property wich
refers to the fact that we did not analyze the limit Y� tN�n � 0 in the main
text.) On the other hand, in case of either Gaussian background chains,
u(B)=0, or a Gaussian test chain, u=0, or both, we obtain u~ <0 for large
overlap: The test chain collapses.

The physical picture behind that analysis is that a polymer solution of
two incompatible species demixes. Incompatibility is signaled by v2>uu(B)

and eventually leads to a phase separated equilibrium state: A test chain is
immediately driven out of the background chains. Equlibrium dynamics
with a tracer chain moving through a semidilute background is only
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possible for a compatible system. With such a system we are dealing in the
main text.

In conclusion we note that the center-of-mass motion in one loop is
independent of u, such that u~ does not show up in Eq. (4.32). For other
dynamic observables like segment correlations we actually do find a con-
tribution similar to u~ in a one loop calculation.
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